\(\int \frac {(A+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx\) [1448]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 456 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 \left (2 A b^2+3 a b (A+C)-a^2 (3 A+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 \sqrt {a+b} \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \]

[Out]

2/3*(A*b^2+C*a^2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2)+4/3*b*(A*b^2-a^2*(3*A+2*C))
*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)-4/3*b*(A*b^2-a^2*(3*A+2*C))*csc(d*x+c)*Ell
ipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*
x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)-2/3*(2*A*b^2+3*a*b*
(A+C)-a^2*(3*A+C))*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/
2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/(a^2-b^2)/d/(a+b)^(1/2)
/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.35 (sec) , antiderivative size = 456, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {4306, 3135, 3072, 3077, 2895, 3073} \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {2 \left (-\left (a^2 (3 A+C)\right )+3 a b (A+C)+2 A b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a^2 d \sqrt {a+b} \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^3 d (a-b) (a+b)^{3/2} \sqrt {\sec (c+d x)}} \]

[In]

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-4*b*(A*b^2 - a^2*(3*A + 2*C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqr
t[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d
*x]))/(a - b)])/(3*a^3*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x]]) - (2*(2*A*b^2 + 3*a*b*(A + C) - a^2*(3*A +
C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^2*Sqrt[
a + b]*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]) + (2*(A*b^2 + a^2*C)*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Cos[c +
d*x])^(3/2)*Sqrt[Sec[c + d*x]]) + (4*b*(A*b^2 - a^2*(3*A + 2*C))*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 -
b^2)^2*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3072

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d
*Sin[e + f*x]])), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3135

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c
+ d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C
)*(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n +
3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && L
tQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{5/2}} \, dx \\ & = \frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} \left (-2 A b^2+a^2 (3 A+C)\right )-\frac {3}{2} a b (A+C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )} \\ & = \frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{2} a^2 b (A+C)+\frac {1}{2} b \left (-2 A b^2+a^2 (3 A+C)\right )+\left (\frac {3}{2} a b^2 (A+C)+\frac {1}{2} a \left (-2 A b^2+a^2 (3 A+C)\right )\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2} \\ & = \frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {\left ((a-b) \left (2 A b^2+3 a b (A+C)-a^2 (3 A+C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}-\frac {\left (2 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2} \\ & = -\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 \left (2 A b^2+3 a b (A+C)-a^2 (3 A+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {4 b \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 17.09 (sec) , antiderivative size = 544, normalized size of antiderivative = 1.19 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {4 b \left (3 a^2 A-A b^2+2 a^2 C\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2}+\frac {2 \left (A b^2 \sin (c+d x)+a^2 C \sin (c+d x)\right )}{3 b \left (-a^2+b^2\right ) (a+b \cos (c+d x))^2}+\frac {2 \left (-5 a^2 A b^2 \sin (c+d x)+A b^4 \sin (c+d x)+a^4 C \sin (c+d x)-5 a^2 b^2 C \sin (c+d x)\right )}{3 a b \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}\right )}{d}+\frac {4 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 b (a+b) \left (A b^2-a^2 (3 A+2 C)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+a (a+b) \left (-2 A b^2+3 a b (A+C)+a^2 (3 A+C)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+b \left (A b^2-a^2 (3 A+2 C)\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 \left (a^3-a b^2\right )^2 d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}} \]

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((4*b*(3*a^2*A - A*b^2 + 2*a^2*C)*Sin[c + d*x])/(3*a^2*(a^2 - b^2
)^2) + (2*(A*b^2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(3*b*(-a^2 + b^2)*(a + b*Cos[c + d*x])^2) + (2*(-5*a^2*A*
b^2*Sin[c + d*x] + A*b^4*Sin[c + d*x] + a^4*C*Sin[c + d*x] - 5*a^2*b^2*C*Sin[c + d*x]))/(3*a*b*(a^2 - b^2)^2*(
a + b*Cos[c + d*x]))))/d + (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*b*(a + b)*(A*b^2 - a^2*(3*A + 2*C))*Sqr
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Ta
n[(c + d*x)/2]], (-a + b)/(a + b)] + a*(a + b)*(-2*A*b^2 + 3*a*b*(A + C) + a^2*(3*A + C))*Sqrt[Cos[c + d*x]/(1
 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]],
(-a + b)/(a + b)] + b*(A*b^2 - a^2*(3*A + 2*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c +
d*x)/2]))/(3*(a^3 - a*b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(4810\) vs. \(2(416)=832\).

Time = 11.64 (sec) , antiderivative size = 4811, normalized size of antiderivative = 10.55

method result size
default \(\text {Expression too large to display}\) \(4811\)
parts \(\text {Expression too large to display}\) \(4922\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d/(a-b)^2/(a+b)^2/a^2*(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*((a*(1-
cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(1/2)*(6*A*
(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b
)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b+12*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^
2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d
*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2+4*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))
^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b
))^(1/2))*a^2*b^3-4*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+
c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^4-5*C*(-(1-cos(
d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^
(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b-7*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)
*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(
d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2-3*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x
+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*
a^2*b^3-3*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(
d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5*(1-cos(d*x+c))^2*csc(d*x+
c)^2-2*A*b^5*(-cot(d*x+c)+csc(d*x+c))+2*C*a^5*(-cot(d*x+c)+csc(d*x+c))-6*A*a^4*b*(-cot(d*x+c)+csc(d*x+c))+2*A*
a^3*b^2*(-cot(d*x+c)+csc(d*x+c))+8*A*a^2*b^3*(-cot(d*x+c)+csc(d*x+c))-2*A*a*b^4*(-cot(d*x+c)+csc(d*x+c))-4*C*a
^4*b*(-cot(d*x+c)+csc(d*x+c))-2*C*a^3*b^2*(-cot(d*x+c)+csc(d*x+c))+4*C*a^2*b^3*(-cot(d*x+c)+csc(d*x+c))-2*A*b^
5*(1-cos(d*x+c))^5*csc(d*x+c)^5+4*A*b^5*(1-cos(d*x+c))^3*csc(d*x+c)^3-2*C*a^5*(1-cos(d*x+c))^3*csc(d*x+c)^3+4*
C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a
+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b+8*C*(-(1-cos(d*x+c))^2*csc(d*x+c)
^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2+4*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c)
)^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+
b))^(1/2))*a^2*b^3-9*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x
+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b-7*A*(-(1-cos
(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))
^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2+A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2
)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc
(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3+2*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*
x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))
*a*b^4-2*A*a*b^4*(1-cos(d*x+c))^3*csc(d*x+c)^3+10*C*a^3*b^2*(1-cos(d*x+c))^3*csc(d*x+c)^3-8*C*a^2*b^3*(1-cos(d
*x+c))^3*csc(d*x+c)^3+4*C*a^4*b*(1-cos(d*x+c))^5*csc(d*x+c)^5-8*C*a^3*b^2*(1-cos(d*x+c))^5*csc(d*x+c)^5+4*C*a^
2*b^3*(1-cos(d*x+c))^5*csc(d*x+c)^5+10*A*a^3*b^2*(1-cos(d*x+c))^3*csc(d*x+c)^3+2*A*(-(1-cos(d*x+c))^2*csc(d*x+
c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(co
t(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^5*(1-cos(d*x+c))^2*csc(d*x+c)^2-C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+
1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x
+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5*(1-cos(d*x+c))^2*csc(d*x+c)^2+4*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^
(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b*(1-cos(d*x+c))^2*csc(d*x+c)^2-4*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(
1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3*(1-cos(d*x+c))^2*csc(d*x+c)^2-3*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^
(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+5*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(
1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+3*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^
(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3*(1-cos(d*x+c))^2*csc(d*x+c)^2-2*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)
^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c
)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^4*(1-cos(d*x+c))^2*csc(d*x+c)^2+6*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^
(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b*(1-cos(d*x+c))^2*csc(d*x+c)^2-8*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(
1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3*(1-cos(d*x+c))^2*csc(d*x+c)^2-3*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^
(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/
2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-cs
c(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+3*C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1
/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-c
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3*(1-cos(d*x+c))^2*csc(d*x+c)^2-3*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(
1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5-2*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x
+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*
b^5-C*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)
^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5+6*A*a^4*b*(1-cos(d*x+c))^5*csc(
d*x+c)^5-12*A*a^3*b^2*(1-cos(d*x+c))^5*csc(d*x+c)^5+4*A*a^2*b^3*(1-cos(d*x+c))^5*csc(d*x+c)^5+4*A*a*b^4*(1-cos
(d*x+c))^5*csc(d*x+c)^5-12*A*a^2*b^3*(1-cos(d*x+c))^3*csc(d*x+c)^3)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(
d*x+c))^2*csc(d*x+c)^2+a+b)^2

Fricas [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(
d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^(5/2), x)